48 research outputs found

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    SINGLE-MOLECULE DETECTION OF RHODAMINE-6G IN ETHANOLIC SOLUTIONS USING CONTINUOUS WAVE LASER EXCITATION

    No full text
    The ultimate in analytical sensitivity is the ability to detect analytes on a single-molecule level. Laser-induced fluorescence (LIF) detection of single molecules in solution is hampered by specular, Rayleigh, and Raman scattering that contribute significantly to the background. In order to observe individual fluorescent molecules as they transit the laser beam in the presence of large backgrounds, it is necessary to detect a large number of photons per molecule. One method to increase the number of photons per event is to increase the residence time of the molecule in the laser beam. However, with long residence times, photostability sets an upper limit on the number of times the molecule can be cycled between the ground and first excited singlet state. We have observed the passage of individual rhodamine 6G (R-6G) molecules in ethanol (EtOH). The use of EtOH as a solvent allows one to obtain nearly 2 orders of magnitude more photons per molecule than may be obtained in H2O. Observation of single molecular events of R-6G in EtOH is substantiated by autocorrelation analysis and from shifts in the histograms of the frequency of photoelectron counts. Results from Monte Carlo simulations also support our experimental results.X11101sciescopu

    Otoacoustic Estimation of Cochlear Tuning: Validation in the Chinchilla

    No full text
    We analyze published auditory-nerve and otoacoustic measurements in chinchilla to test a network of hypothesized relationships between cochlear tuning, cochlear traveling-wave delay, and stimulus-frequency otoacoustic emissions (SFOAEs). We find that the physiological data generally corroborate the network of relationships, including predictions from filter theory and the coherent-reflection model of OAE generation, at locations throughout the cochlea. The results support the use of otoacoustic emissions as noninvasive probes of cochlear tuning. Developing this application, we find that tuning ratios—defined as the ratio of tuning sharpness to SFOAE phase-gradient delay in periods—have a nearly species-invariant form in cat, guinea pig, and chinchilla. Analysis of the tuning ratios identifies a species-dependent parameter that locates a transition between “apical-like” and “basal-like” behavior involving multiple aspects of cochlear physiology. Approximate invariance of the tuning ratio allows determination of cochlear tuning from SFOAE delays. We quantify the procedure and show that otoacoustic estimates of chinchilla cochlear tuning match direct measures obtained from the auditory nerve. By assuming that invariance of the tuning ratio extends to humans, we derive new otoacoustic estimates of human cochlear tuning that remain mutually consistent with independent behavioral measurements obtained using different rationales, methodologies, and analysis procedures. The results confirm that at any given characteristic frequency (CF) human cochlear tuning appears sharper than that in the other animals studied, but varies similarly with CF. We show, however, that the exceptionality of human tuning can be exaggerated by the ways in which species are conventionally compared, which take no account of evident differences between the base and apex of the cochlea. Finally, our estimates of human tuning suggest that the spatial spread of excitation of a pure tone along the human basilar membrane is comparable to that in other common laboratory animals
    corecore